Environmental Resistance and Reliability

Outline

- Introduction
 - Environment and reliability
 - Components
- Component radiation damage and reliability testing
 - lasers
 - fibres
 - connectors
- Conclusions

Reliability

- Probability of components surviving for the required lifetime in the given operating environment
- For our 'unusual' environment separate reliability issues
 - effects and tests specific to CMS Tracker environment
 - usual known degradation mechanisms and reliability tests
 - but check for influence of irradiation

Tracker environment

- 10 years minimum operational lifetime at
 - T ~ -10°C
 - B = 4T
 - exposed to high radiation field
- radiation damage the most important issue
 - can exclude magnetic components
 - -10°C within typical telecoms operating specs

Tracker radiation environment

high collision rate high energy large number of tracks

cause of radiation damage

Charged hadron fluence (/cm² over ~10yrs)

CMS Tracker optical links

Components under review

Transmitter

- edge-emitting 1310nm InGaAsP/InP MQW lasers
 - most sensitive component...
- Fibres
 - SM standard telecom fibre
 - 1-way fibre pigtails, 12-way fibre ribbon cables, 8x12-way cables
- Connectors
 - 1-way (e.g. MU), multi-way (e.g. MT)
 - All either COTS or based on COTS components

Testing during development phase

Environmental tests

- Irradiation (all components)
- B-field (lasers and connectors)
- also Temperature (lasers)
- Reliability (irrad+un-irrad)
 - Thermally accelerated ageing (lasers)
 - Strength (fibres, cables)
 - Mating cycles (connectors)

Sample test overview

• e.g. lasers

Testing aims

- Validate candidate components
 - suitability for use in Tracker
- Detailed investigation of radiation effects
 - Measure effects for Tracker doses/fluences
 - Understand the damage mechanisms
 - Extrapolate to full experiment lifetime
- Feedback effects into definition of specs

Examples of components

tested for rad-hardness

1-way InGaAsP edge-emitting lasers on Si-submount with ceramic lid

96-way cable

12-way optical ribbon and MT-connector

single fibre and 1.25mm connector ferrule

Optical Links PRR: 11 May 2001

Laser testing

- Radiation damage
 - ionization
 - displacement
 - annealing
- Accelerated ageing
- B-field

Irradiation test system

in-situ measurement setup (lasers)

in-situ data better for extrapolation

Gamma irradiation at SCK-CEN

1999 Market Survey underwater source Co-60 gammas dose rate 2kGy/hr

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

Gamma irradiation

Laser L-I characteristics

Before/after 100kGy

- No significant effects for ionization damage
- Same conclusion for <u>all</u> laser diodes tested

Neutron irradiation at UCL

Recent validation tests of laser diodes

~20MeV neutrons flux ~ 5x10¹⁰n/cm²/s fluence ~ 5x10¹⁴n/cm²

neutrons

Samples stacked inside cold box (-10°C)

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

Neutron irradiation

Laser L-I before/after 3x1014n/cm2

- ~20MeV neutrons (UCL)
- Temp -10°C

- Laser threshold I_{thr} ↑, efficiency E ↓
- effects similar (to factor ≤2) in <u>all devices</u>

Damage vs fluence

Laser threshold I_{thr} and efficiency E

- ~20MeV neutrons (UCL)
- Temp 20°C

- Damage <u>always</u> ~linear with fluence
 - NIEL dependence..?

Optical Links PRR: 11 May 2001

Annealing

Laser threshold I_{thr} and efficiency E

- Beneficial annealing only
 - recovery of damage during/after irradiation
- Same basic mechanism for I_{thr} and E

- after 4.7x10¹⁴n/cm²
- ~20MeV neutrons (UCL)
- Temp 20°C

Optical Links PRR: 11 May 2001

Annealing vs Temperature

Measure at different T

- Type Z
- 10¹⁵n/cm² ~0.75MeV n
- Annealed at 20,40,60,80°C

- Fit data with activation energy spectrum
 - uniform range 0.66<E_a<1.76 eV works well</p>

- non-radiative recombination
 - defects in and around active volume reduce carrier lifetime
 - (ref: SPIE 2000)
 - competes with radiative recombination

Damage comparison

Laser threshold I_{thr} with different sources

- Relative damage factors
 - 0.75MeV n (=1)
 - ~6MeV n (=3.1)
 - ~20MeV n (=4.9)
 - 200MeV π (=11.5)
 - 24GeV p (=9.4)
 - 1MeV γ (~0)

- Coverage of CMS particle energy spectrum
- Similar factors for different InGaAsP/InP lasers

Damage prediction

- Knowing damage factors and Ea spectrum
 - Predict damage evolution in 10yr CMS lifetime

- Important damage dominated by pions
- Type Z lasers
 - $\Delta I_{thr} \sim 14 \text{mA}$
 - first 10yrs at radius=22cm

ref: Proc. SPIE 2000

Laser test procedures (revisited)

Focus now on in-system lab tests

Lab testing pre/post irrad

In-system test-bed

- Static tests
 - measure threshold, gain, noise, linearity,
- Dynamic tests
 - rise-time (bandwidth)

Transfer characteristics

Table 2: I2C pre-bias settings for laser A-E

	Laser						
	A	В	C	D	E		
I2C-bias setting before irradiation	8	8	9	9	8		
I2C-bias setting after irradiation	14	15	1A	19	8 (not irrad)		

 Transfer characteristics before and after irradiation

- Need to increase in d.c. bias-point
 - due to threshold increase
- gain decrease
 - due to efficiency loss

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

Noise

- Noise normalized to peak-signal before and after irradiation
- Decrease in signal/noise
 - gain loss
 - more noise at higher currents
 - Laser driver related

Linearity

- Linearity before and after irradiation
- no significant change

Optical Links PRR: 11 May 2001

Other studies on lasers

- Accelerated ageing
- B-field

Optical Links PRR: 11 May 2001

Laser reliability

Ageing test at 80°C

ref: Proc. RADECS 1999

- 40 devices (Type Z)
- 30 devices irradiated to >10¹⁴n/cm²
- 4000 hrs ageing
- No additional degradation in irradiated lasers
- acc. Factor ~400 relative to -10°C operation, for E_a=0.4eV
- lifetime >>10years

B-field: functionality

- Spectral and static characterization
 - in-system functionality test
 - up to 2.4T
 - various angles
 - No effect on spectrum
 - No effect on L-I, noise, linearity
 - ref: CMS Note 2000/40
 - recent Vienna data (now up to ~10T)

B-field: packaging

 Exclude magnetic materials in laser package

Laser summary

- Radiation damage and annealing
 - threshold increase, efficiency decrease, beneficial annealing
 - add compensation into laser driver specs
- Ageing
 - lifetime >>10yrs
 - no additional degradation in irradiated lasers
- B-field
 - no effect up to 10T
 - non-magnetic package

Fibre radiation damage testing

- 1-way fibre
 - attenuation
 - strip force
- 12-way cable
 - insertion loss
 - bending loss
- 96-way cable
 - strength tests

Radiation test system - fibre att'n

in-situ measurement of fibre attenuation

Ref: Market Survey, 2000 (SCK-CEN Co-60 source)

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

'Colour centres'

- Attenuation in irradiated glass due to radiation induced "colour centres"
- e.g. lenses irradiated in collimated beam
- impurities affect degree of damage

courtesy A.Gusarov (SCK-CEN)

Gamma damage

Fibre attenuation up to 100kGy

COTS single-mode fibres

1310nm

 for ~10m length inside CMS Tracker expect no more than ~0.6dB (not including annealing)

ref: Proc. SPIE 1998

Optical Links PRR: 11 May 2001

Neutron damage

• ~6MeV neutrons to ~ $5x10^{14}n/cm^2$

 Damage most likely due to γ background

Loss below 0.1dB/m Rates are d

Rates are different for different fibres

Fibre annealing

damage recovers after irradiation (e.g. γ data)

- Significant annealing after irradiation
- Damage therefore *dose-rate* dependent
 - expect more annealing over CMS Tracker lifetime
 - i.e. less damage than measured here

12-way ribbon cable test

12-way ribbon cable bef/after 100kGy

- No significant degradation after irradiation
- No bending loss seen down to 1.5cm bend-radius (spec=3cm)

Cable strength

4x10m 96-way cable samples

- 1x 100kGy gamma
- 1x 10¹⁴n/cm² 0.75MeV neutrons
- 1x 100kGy gamma + 10¹⁴n/cm² 0.75MeV neutrons
- 1x unirradiated
- Tested by Ericsson Cables
 - Impact
 - Repeated bending
 - Tensile load
 - no significant degradation due to radiation damage

Fibre summary

- Radiation damage (to attenuation)
 - Iosses <<1dB expected in Tracker</p>
- cable insertion and bending losses
 - no difference before/after irradiation
- strength tests
 - no difference before/after irradiation

Connector testing

B-field

- exclude magnetic components
- Radiation damage
 - irradiate non-magnetic components
 - insertion-loss and return-loss bef/after 100kGy
 - single-way
 - multi-way

B-field

e.g. MU connector test

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

B-field + functionality summary

MU-connector irradiation

- After 100kGy
 - no damage effects

	TOT min		TOT avg		TOT max	
	IL	RL	∟	RL	∟	RL
Before irr:	0	45	0.15	49	0.58	53
After irr:	0.02	43	0.23	47	0.4	52

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

MT-connector irradiation

- After 100kGy
 - no damage effects

Optical Links PRR: 11 May 2001

Environmental Resistance and Reliability

MT-connector reliability

- Repetitive connection cycles
 - 40 before irradiation
 - 100 after irradiation
 - 200kGy and 10¹⁴n/cm²

No radiation damage effects

 Ref: RADECS 1997 Data Workshop

Optical Links PRR: 11 May 2001

Connector summary

- magnetic components excluded
- insertion loss, return loss and reliability (repetitive cycles) unaffected by radiation damage

Conclusions

- Extensive series of environmental and reliability tests
 - significant number of devices tested over 5 years
- Enabled selection of components suitable for use in CMS Tracker
- Feedback of test results into system spec's
 - compensation of important radiation damage effects built in system
 - final failure rate unlikely to be dominated by radiation damage

