
CMS microstrip tracker readout

- Front end almost complete APV25 frozen final DCU, MUXPLL submitted 0.25µm contracts in place
- **Optical link** *very advanced state* ready to start procurement
- DAQ interface *PMC FED exists* final FED being designed
- Control system *well advanced* FEC & 0.25µm chip set exist
- System

1

under construction in CERN lab 25nsec beam May 2000

Optical link status

- Project entering production phase
- Feasibility demonstrated with close to final components
- Robustness & radiation tolerance measured
- Market surveys for all elements in the chain
- Manufacturers of lasers and connectors short-listed
- Final calls for tender needed mid 2001

Final system and costs depend on tender actions NB non-trivial to manage these large tenders *interdependent components, booming electronic*

market, special requirements,

small volumes cf commercial demand

2

Why analogue optical link PRR now?

• Optical link components well factorised from remainder of readout system but tightly linked in finalising system

Exhaustive scrutiny of component performance (& manufacturers)

final components (and costs) needed (ESR) but...

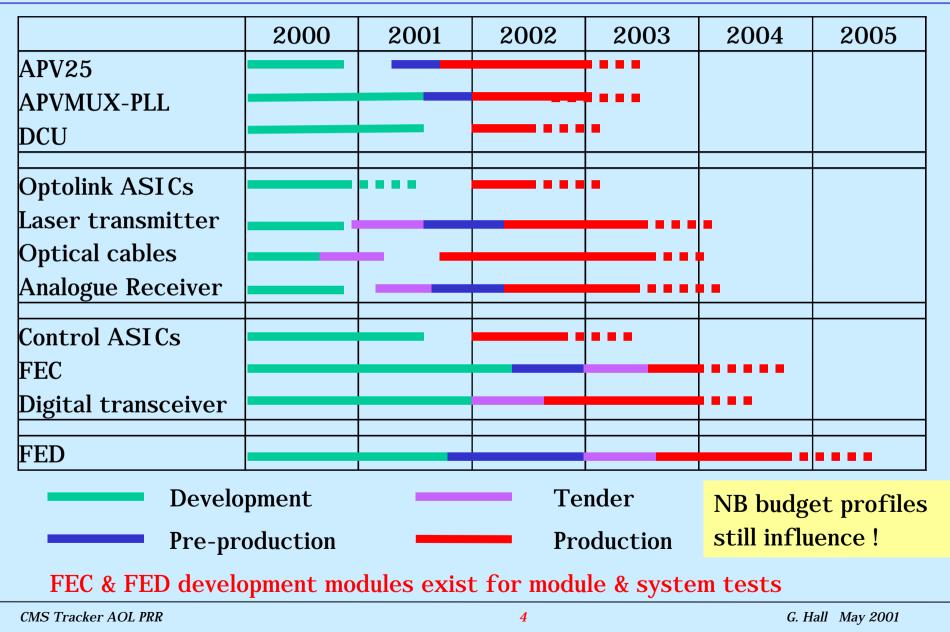
...can't procure pre-production components without completion of tenders some system elements (eg FED) can't be finished without final optical links final FED now essential for large scale acceptance tests from 2002

• Now need to make commitments

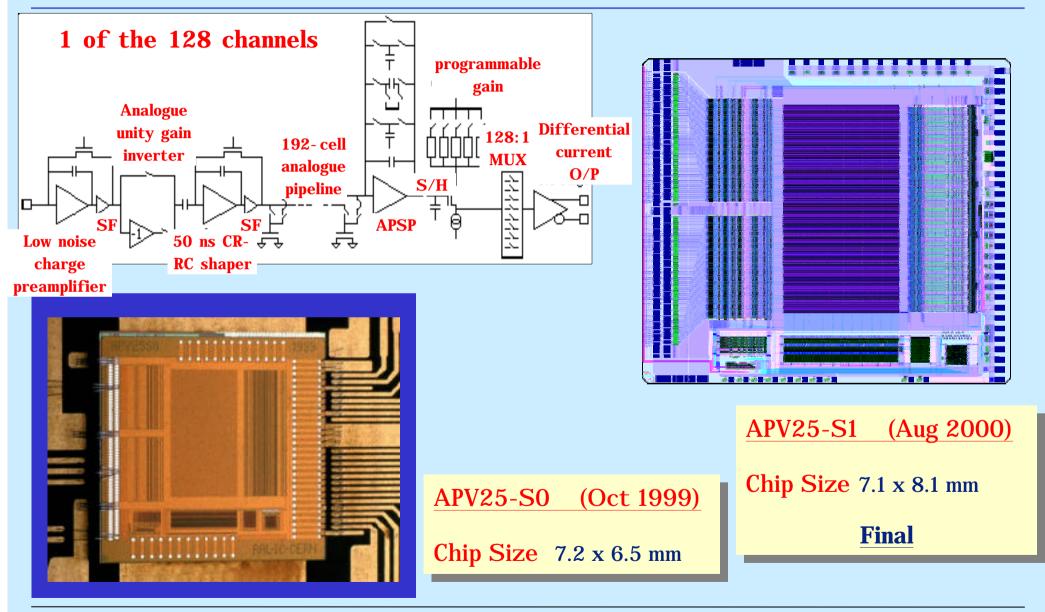
Commercial procurement on large scale (for HEP)

• This talk - snapshot of system

Main missing information


system tests with modules in realistic mechanical & electrical environment

• Glossary (offline) please see


http://pcvlsi5.cern.ch/CMSTControl/documents/GeneralDoc.htm

Readable system summary + references to considerable published information

Major components and schedule

APV25 0.25μm CMOS

CMS Tracker AOL PRR

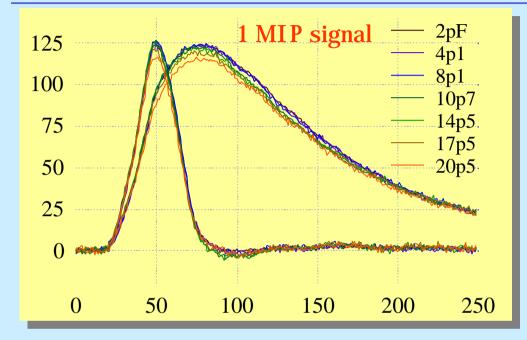
New features in 0.25µm APV

• Motive for late change of technology

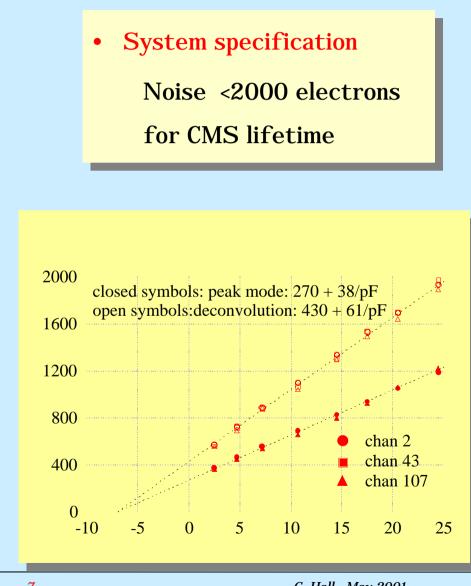
Radiation hardness from standard reliable process & significant cost gains

• Strategy

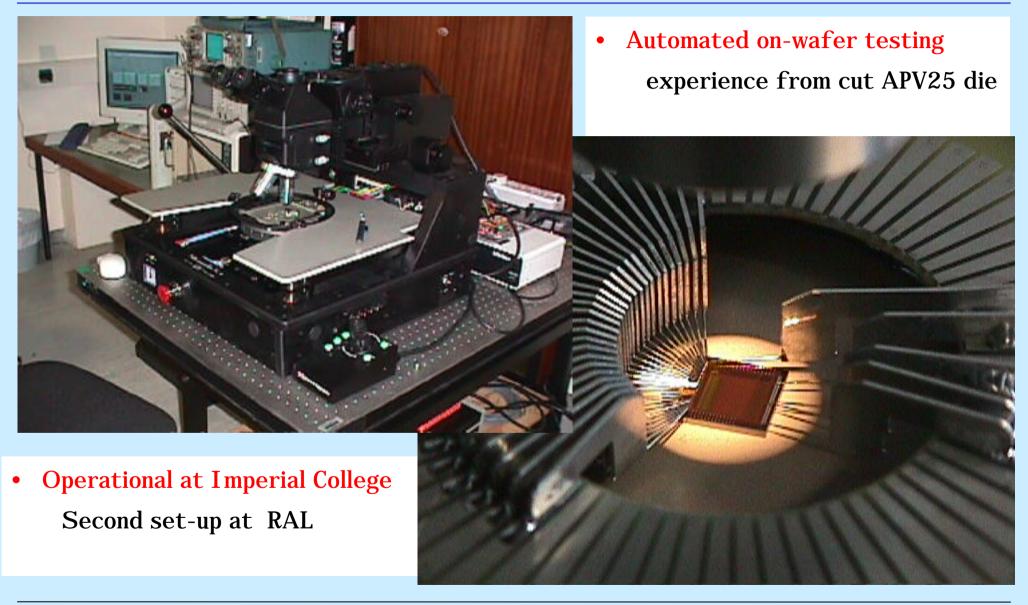
only changes essential for new process *e.g. 2.5V power supply*


- + few system level enhancements e.g.
- Longer pipeline 192 [160]
- Deeper buffers 10 (x3) [6 (x3)]
- S/N improved 2000/0.36 PMOS @ 400μA [3000/1.4 PMOS @ 500μA]
- Switchable input polarity & differential output

•	Reduced size	57mm ²	[77mm ²]
•	Reduced power	2.3mW/channel	[2.4 + MUX]


• All benefits realised... entire system based on single 0.25µm process

CMS Tracker AOL PRR


Typical lab test results APV25-S1

- < 5 % non-linearity to 5 MIPs
- **Pipeline pedestals & gain uniformity** additional noise typical < 150e
- Significant speed & V_{supply} margins
- Good noise uniformity

Chip testing

Chip testing summary

• Digital functionality

• Power supply currents

• Analogue tests

Every channel

Every pipeline location

only noise not measured on-wafer

to be used in production

_	
Bas	ic digital functionality
	I2C functionality (read/write to all locations, test for stuck bits, response to all
	possible chip addresses)
	Check for correct address in digital header
	0
	Look for header error bit set after 1000 pseudo-random triggers
Pow	er supply currents
	Verify VDD and VSS currents within acceptable range
Pipe	eline
	Measure pedestals for every pipeline cell for all channels, look for bad locations
	(high/low pedestals) and correct pipeline column address in header
Cha	nnel pedestals
	Verify analogue baseline can be adjusted and measure pedestals, look for high/lo
	channels. Do this in both peak and deconvolution modes.
	chamics. Do this in both peak and acconvolution modes.
Cha	nnel calibration
	Measure pulse shape for all channels in peak and deconvolution modes.
	Look for bad channels (low pulse heights).

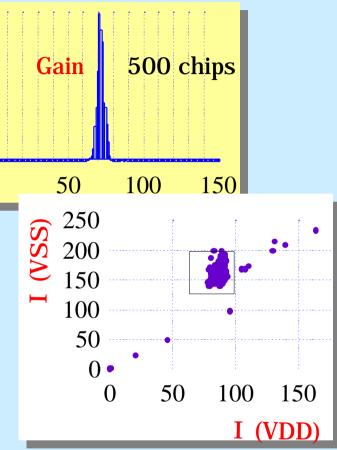
- Test time < 2mins/chip
 - => 1 8inch wafer per probe station per day
 - => Complete testing in ~1 year

APV25 chip testing results

 Consistent high quality from MPW and 10 wafer order APV25-S0 passed <u>all</u> tests: 84% (500 die) APV25-S1 cut wafer yield : 66% (~222 die)

Uniformity excellent

• 8 inch APV25-S1 wafer testing under way

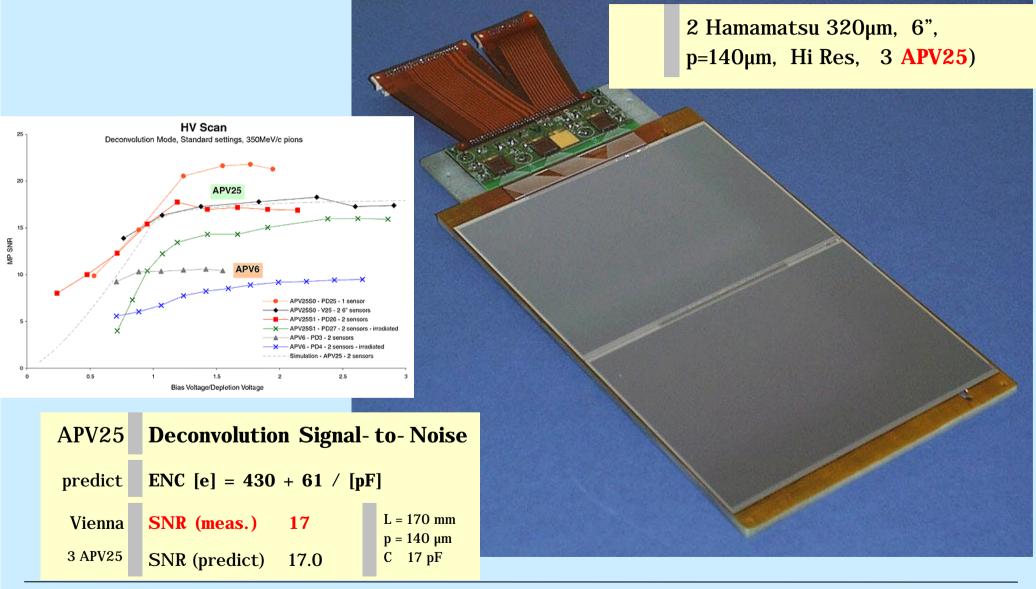

3/9 wafers tested to date

refining final tests, criteria & software

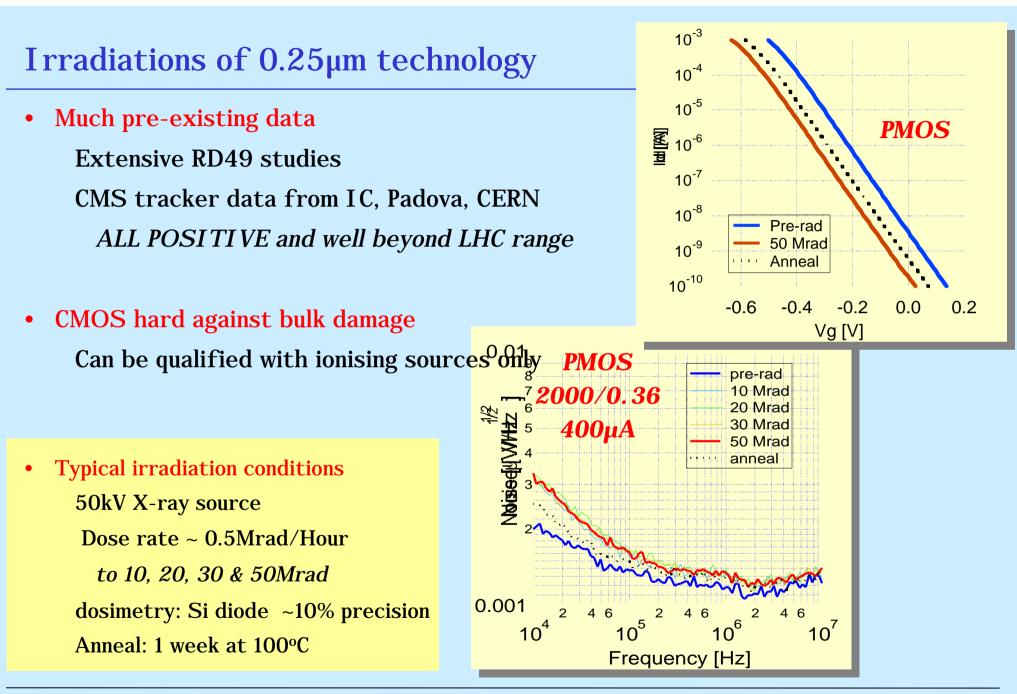
Data base prepared

Do not expect problems to match module production schedule

draft QA document exists (for all chips)


APV25 wafer test results

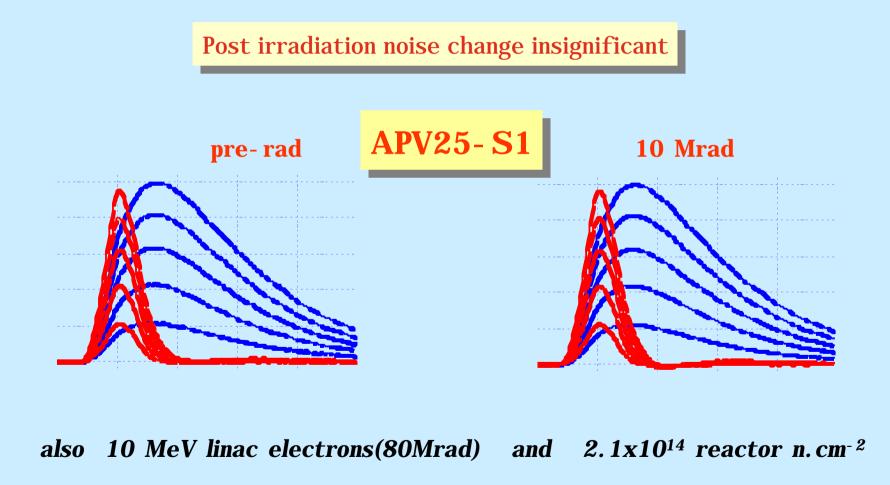
	JLCS9NT	JOCSEPT	JICS9RT	Total						2	1			123	EXEL 3	901.7 III8	1118	1119	HIL I H	ALL I	5	J	Ι	CS	59F
				Fails					1	NIL 17			ш.	111	1	118			_	101 100 103 10		RE I			
							2	8612 (6012	4117	101	171.7	EU 12	1 30	110	1111	117	107	nu.	нр	1111	E7 1	87 20			
Digital	68	52	48	168		1	曲	DES 1	015	163	125	01 18	96 JD	1206	1234	1118	3116	1)1ł	1815	1136 (81.6 1	86 (B)	3	(234	1
<u> </u>					1	ENT.	ttt	6425	613	163	173	85 P	5 20	110	1111	III.	3415	лii	1K2	mi ji	n i	R5 (22)	5 22	- history	The second s
Power	4	6	3	13		101	101	0.11	411	101	173	EX B	23	221	111	ш	3118	718	163	1711 1	EI 1	RI 20	1 23		NIT:
				1	1		113	613	613	83	1717	EI 18		in	1115	1111	1413	1115	183	mi i	0	80 20	1 22	1 201	
ripeline	9	6	8	23	tu	411	th	2412	e112	82	72	12 12	2 33	122	111	111	101	111	182	mi	12	97 M	1 22	1 22.11	2112 11
						tii	atri.	46	en 1	NII	120	ti y	a m	1 200	1211	,tti	1411	щ	IRI IRI	ttu i	81.1	RI III	2.1	211	रेता अंध
Channels	36	26	25	87	00 I.I	1 110	\$12	461	£110	82	17.0	12 2	4 31	200	3130	111	1111	1910	183	1110 1		11 12	1 23	1000	201 30
& calibr.					U.	0 410	110	\$109	0.0	18/7	1708	11 1	1 34	20	1709	187	1408	777	1939	100 1	10 1	N9 30	\$ 2.0	1 2319	2309 240
Fotal	117	90	84	291		8 628	118	6408	613	88	1798	12	19 28	128	1398	131	3408	379	148	1428 1		X8. 20	1 7.8	1 238	238 340
(adra)				8	100	1 20	1317	6827	07	101	99	80 10	1 3	1 201	100	UT.	147	yyr	1947	107 1	10	10	1 28	1 2311	ALL NALL
(edge)	(60)	(49)	(48)	(157)		215	<u> </u>	6496	6126	105	100	101 27	1 70	120	2254	2386	1456	7154	186	126 1	46 1	NS 30	4 72	6 2206	226 226
lield	70 %	77 %	79 %	75 %	À	03	1315	6405	015	145	005	10 10	1 28	220	100	130	3455	100	185	-		305 200 11 Frank	1,1,1,1,1	and the second	圞
	/0 /0	////0	13 /0		3	1	1364	\$408				81 19				1314	1406	200	1938	1774	a f	Ke (=	1 25	1 234	1
								107	810	NIL I	2761	-		2007	101	181	1408	2011	1803	100 1	m	N0 20	1		
• Cut	wafer re	test							555	100	iner 1	. 6			-111	181	100	1940	189	102 1	100	··· 🛗	1		


wafer cut poor quality but still <2% good die failed and then you have

NAL TIME OVER

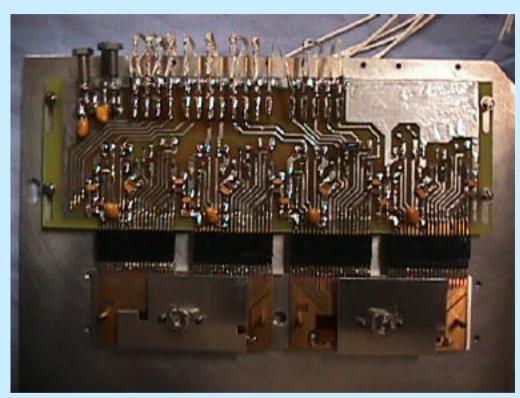
300 MeV/c beam test (Vienna)

CMS Tracker AOL PRR



APV25 irradiations (IC & Padova)

• IC x-ray source


Normal operational bias during irradiation

clocked & triggered

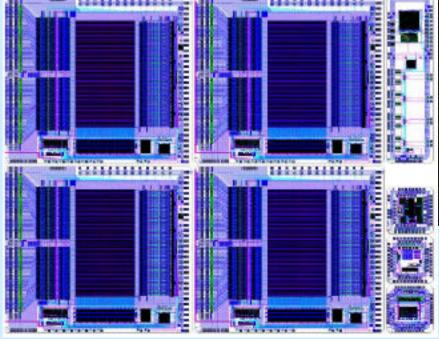
CMS Tracker AOL PRR

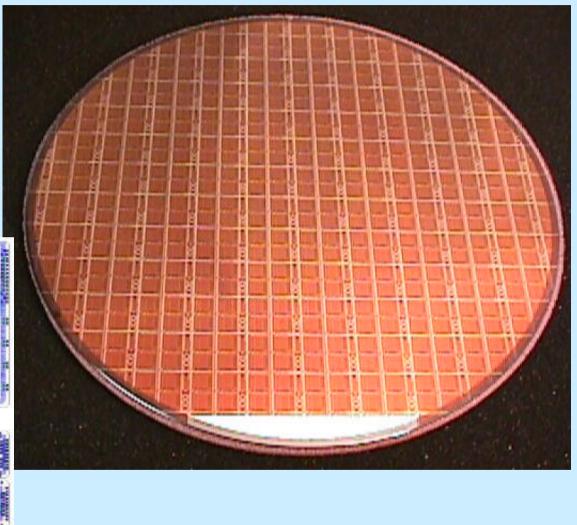
Single Event Upset tests Heavy ions and pions

Ion	Si	Cl	Ti	Ni	Br	Ι
LET (MeV. cm ² . mg ⁻¹)	9- 10	13- 16	20- 23	28- 32	39	62

 local highly ionising particle near sensitive circuit node can change state of logic elements

origin - knock-on silicon ions in chip

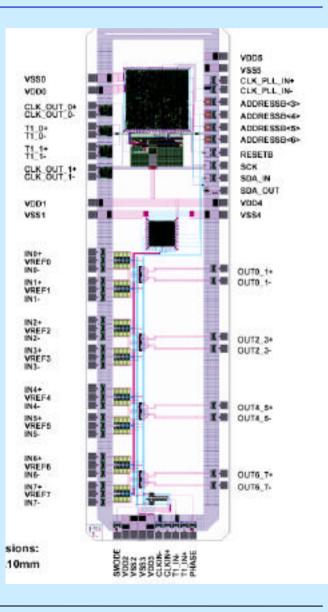

- 4 APV25s in three tests Feb 2000, July 2000, Dec 2000
- Measured circuit cross-sections include in CMS Simulations
- Conclusions <u>full system</u>
 ~150 SEU per hour
 = 0.15% APV25s
 verified in π beam Dec 2000


Technology very robust

Production wafer layout

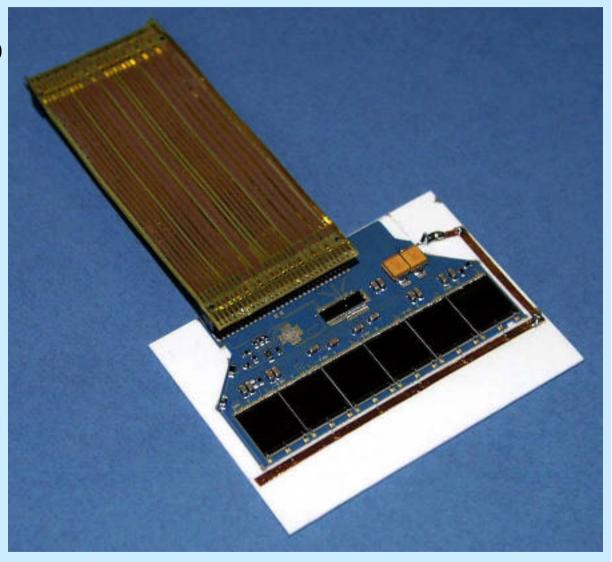
- Overall size 200mm
- APV25 die 400
- APVMUX+PLL die 100

Reticle dimensions 18,420mm x 14,400mm


CMS Tracker AOL PRR

Other FE chips (i) APVMUX-PLL

- to ease production, FE PLL + APVMUX as single chip electrically independent
- PLL guarantees good clock & T1 on module

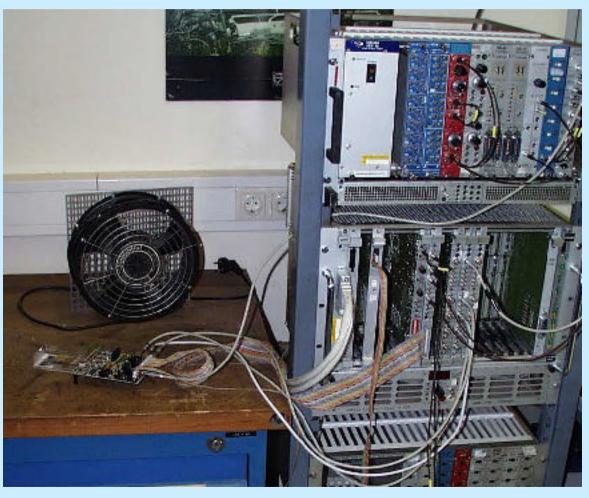

 + fine tuning of delay individual version successfully tested
- APVMUX interleaves 4x2 APV 20MHz data streams

 => transmission switch die delivered August... problem on test extra power
- Resubmitted October MPW run (-> March 2001) single mask layer change to correct fault further minor fault - resubmit May 2001
- Main impact now on schedule need to finalise FE hybrid

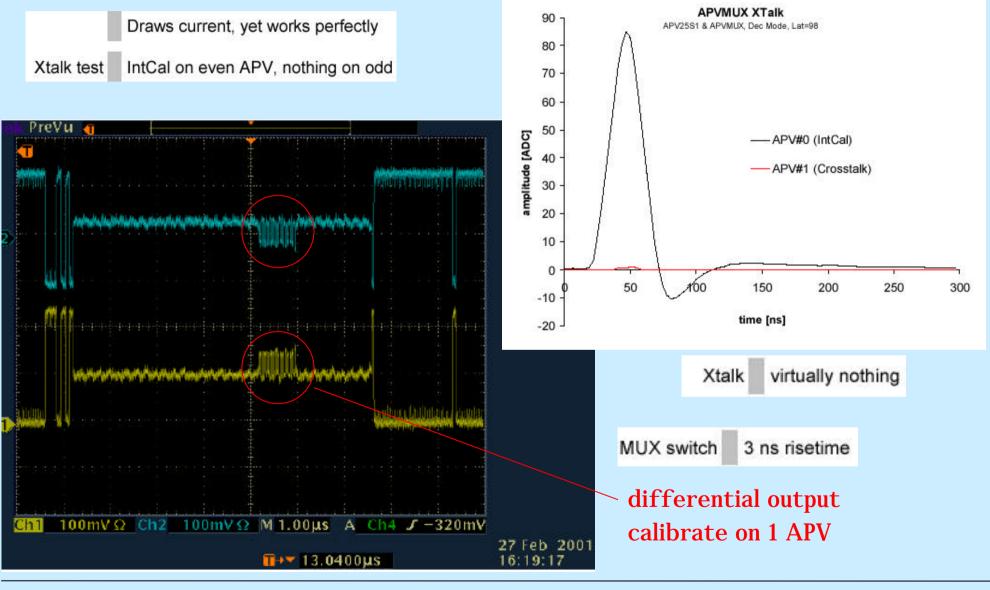
FE hybrid (Strasbourg)

- Ceramic hybrid Choice of technology Oct 2000
- First TIB hybrid Nov 2000
 CERN workshop manufacture
 PLL-MUX problem complicates
 operation
 problem with 30m resistance
 solved + ...
 - ... robust at system level
- TOB hybrid delivered April 2001 to deliver system test
- Industrial production foreseen Market survey beginning

CMS Tracker AOL PRR

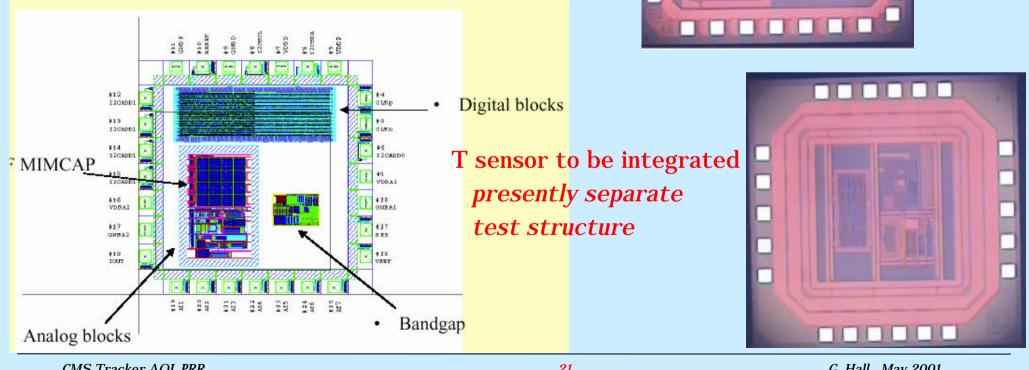

Hybrid test in Vienna Feb 2001

• Readout system as used in beam and SEU tests

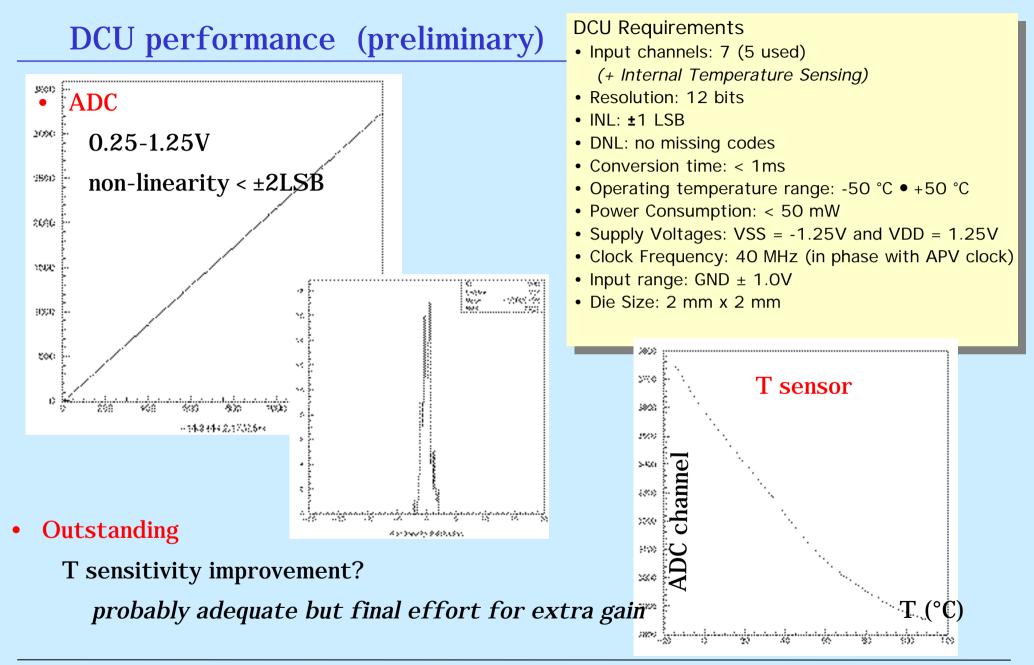

System	6 APV25 + APVMUX \rightarrow 3 analog channels						
IntCal	1 MIP level (ICAL=36)						
	Typical IntCal Signal and Noise values						
	Noise [e] is calculated assuming 22500 e from ICAL=36						
(no detector)							
Mod	e Signal	Noise	SNR	Noise			

Mode	[ADC]	[ADC]	ONIX	[e]
Peak	72	1.10	65.5	344
Deconvolution	83	1.58	52.5	428

Dec Noise ENC [e] = 400 + 60 / [pF] good agreement



APVMUX performance on hybrid



Other FE chips (ii) DCU

- Current, temperature and V_{supply} monitoring Specifications & footprint frozen chip fabricated, first iteration problem second version meets requirements possible fine tuning
- Freeze summer 2001

CMS Tracker AOL PRR

Radiation qualification

• stable process

verify wafers within manufacturer's specs, data base to record

• stable performance

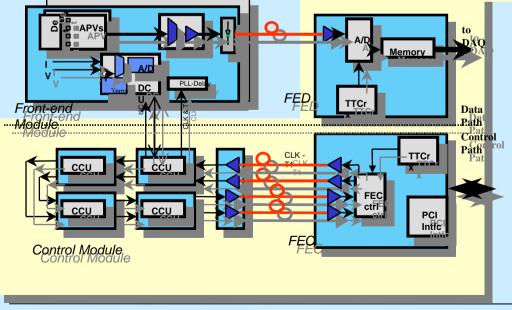
electrical measurements of APV25 (& others) most statistics, detail, and prompt

• total dose irradiation

samples from 10% wafers

APV25 & test structure in <u>both</u> UK & Padova = 20% x-ray, ⁶⁰Co, 8MeV e available

- irradiations of other components evidence of hardness is cumulative
- other effects SEU, SEGR


much data now exists, cumulative

NB all CMOS hard against bulk damage

NB hardness relies on intrinsic hardness of technology (oxide) enclosed geometry nMOS

NB no evidence of technology weakness 0.25µm statistics exceed most other processes

	ASIC	Function	Status in	Number
Control system			0.25µm	
	CCU25	Master of	Rad soft version	4000
• Non-critical path items - so far		control network	Submit 5/01	
• during 2001	LVDSMUX	Clock routing	Working	4000
	LVDSBUF	Buffer	Working	10000
complete ASICs	RX40	Digital optical	Complete	1000
verify operational performance		receiver		
plan manufacture	LD	Laser driver	Prototyped	20000
1			Final 5/01	
assemble on common wafer	PLL25	Clock integrity	Complete	4000
for cost reasons		& delay		

Remaining issues are essentially:

 cost management
 logistics
 manufacture & packaging
 test
 assembly

Schedule ASIC chips

• APV25-S1

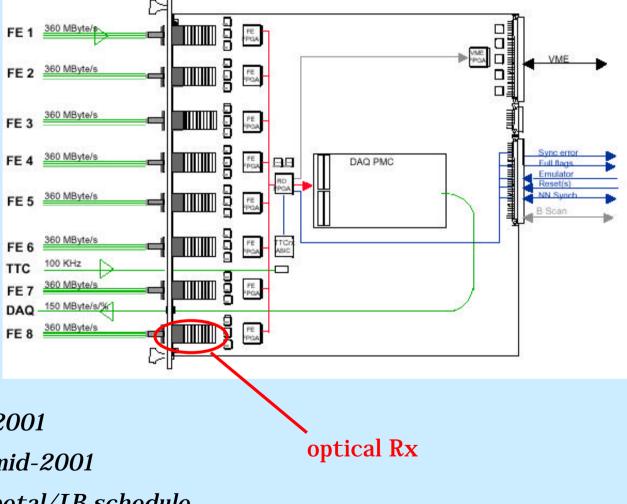
10 wafers in hand ~2500 APV25 DCU & APVMUX-PLL ok for current tests

- Final APVMUX-PLL tested September 2001 May MPW run (=>August) Once proven, production masks frozen
- Further engineering run obligatory verify final masks
- Launch 50 wafer production July? cost \$120k verify large scale test procedures, data handling & storage
- Ancillary chips

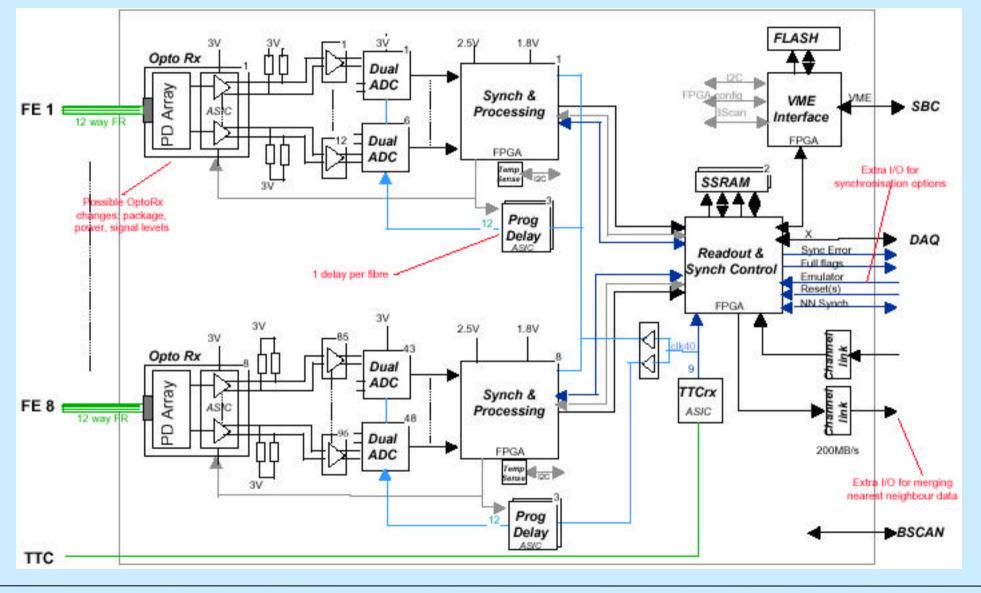
common wafer early 2001

Sufficient for >200 modules + other tests

Front End Driver - Tracker-DAQ interface


• 8 channel PCI module in use

ok for module testing



- Final FED 9U VME module 96 optical channels
- Schedule

design study to end 2000 User Requirements April 2001 pre-production prototype mid-2001 production match to rod/petal/IB schedule

FED functionality

CMS Tracker AOL PRR

Power supply system (Firenze + Torino)

• Specifications defined

• Challenging subject

Long cables No internal regulators Unbalanced I + & I - in APV Scope for noise in power delivery to module, clocks

• System test required

July-Dec 2000	Commissioning of DAQ system.
	Cable selection and procurement.
Nov 2000:	Delivery of cables.
	Test of cable electrical specs.
Jan 2001	Delivery of power supply prototypes.
	Test of characteristics.
Feb 2001	Cables and power supply installation.
	First test of system with 1-2 detectors.
March-May 2001	Full test of system with N detectors.
	Test of different cable configurations.
June 2001	Commissioning of small scale version of system to power three groups of N detectors.
Jan 2002	Delivery of small scale version of power supply system.
Feb - May 2002	Test of whole system with three groups.
July 2002	Final cable selection and definition of the complete power supply system.
	Start cable and power supply system tendering.

...

Development status

• Power supplies

Unipolar baseline scheme adopted (0, +1.25V, +2.5V)

LV and HV supplies to float

PS modules power groups of ~60APV => ~ 1800 PS units

Cost model vs current to be provided

• Cables 3 major sections

USC55 - detector racks ~100m Detector racks - patch panel ~40m Patch panel - module groups 4-5m preliminary costings exist, more detailed quotes to be obtained

• Open questions

detailed module grouping

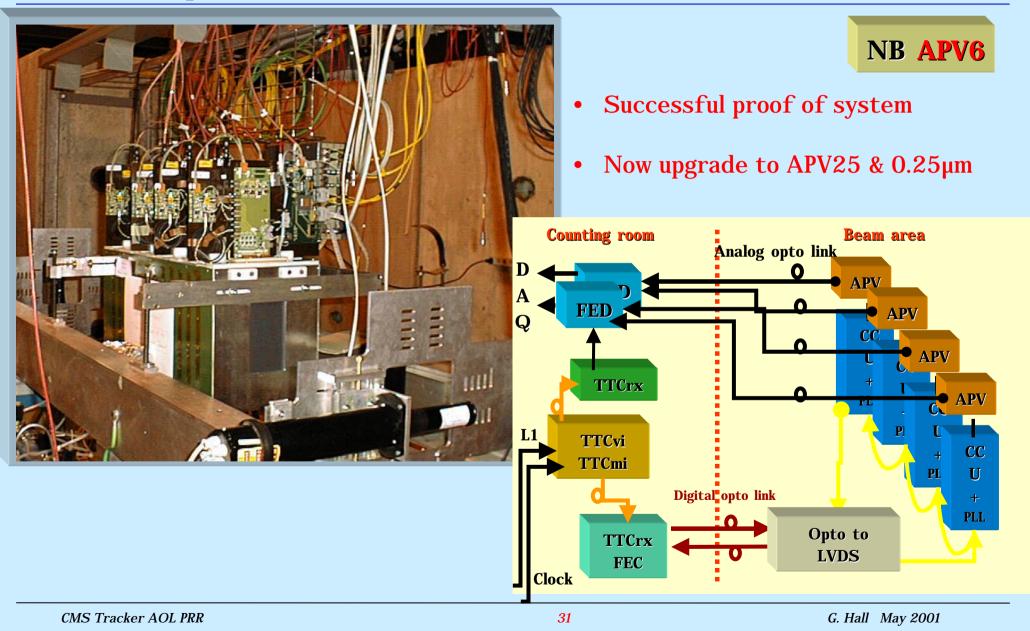
cost and time implications of any problems

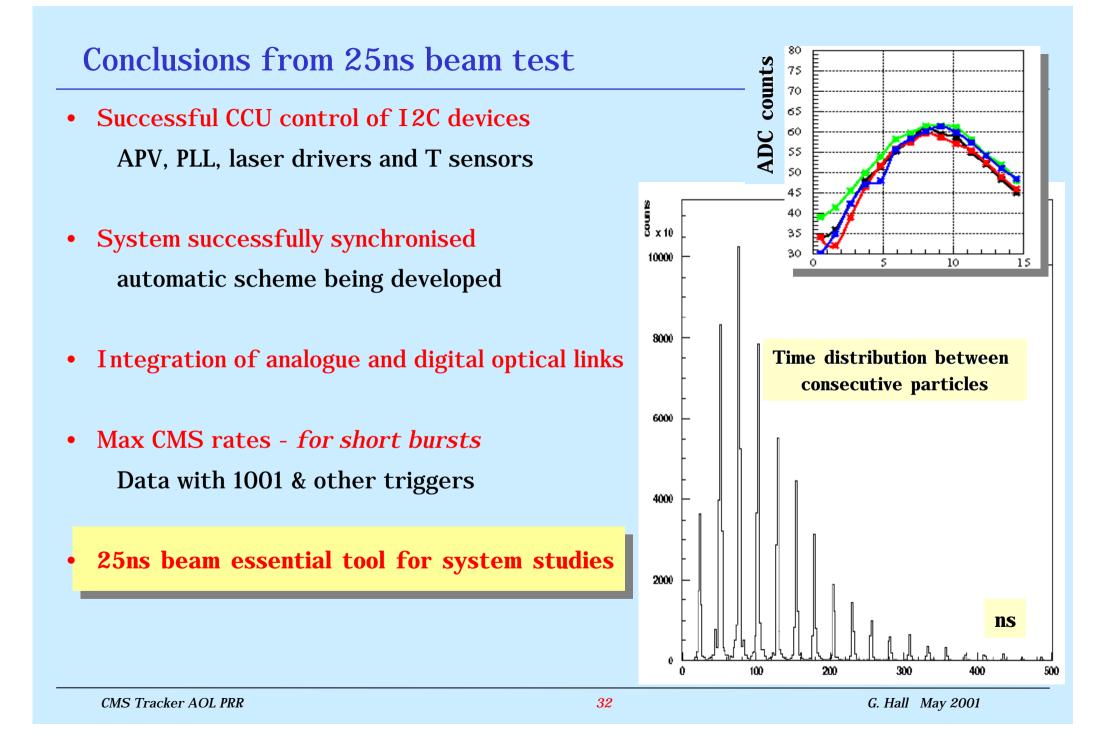
LHC-like beam test

May 2000

Motivation

Operate in an LHC like environment a tracker electronics chain:


- FE read-out
- Control system
- Data Acquisition:
- Optical Links


APV chips FEC + CCUs + PLLs FEDs digital for timing and control analogue for data transfer

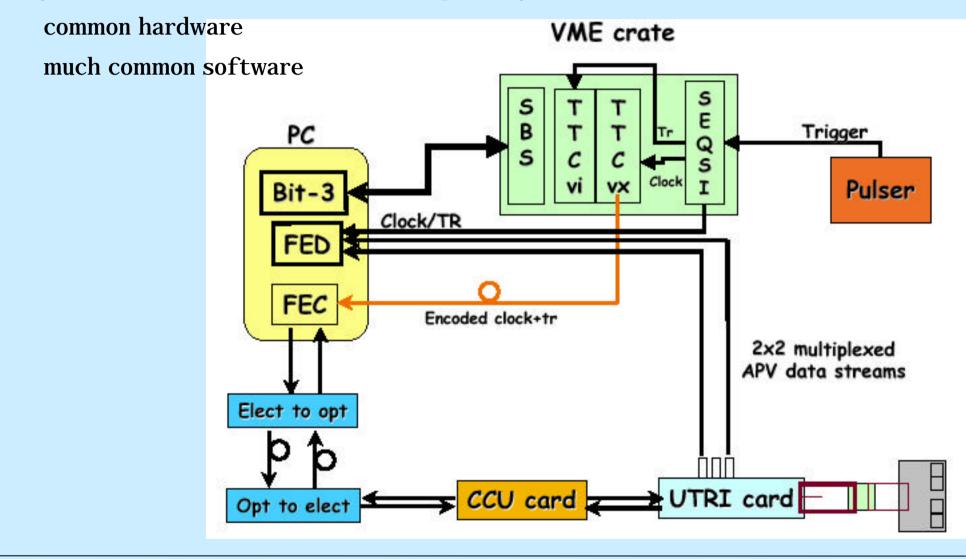
Debug the system and start answering questions such as:

- How to synchronise a modest number of detectors?
- Effect from close triggers on the data quality ?
- How long system can run continuously in an LHC like environment?
- + many others...

X5 setup

Preparations for 2001 system test

• Stages


•

System software and hardware well advanced Final hybrid assembly and operation working hybrid operational Module assembly and operation Multi-module installation **Operation of TOB rod** subsequently TEC & TIB units + several internal reviews ASIC final review FE hybrid Power & grounding DAQ & Control system

Aim to complete system test and hold ESR in December 2001

PC based test-bench at CERN

• Symbiosis between module test set-up and system test

Summary

- All component developments virtually complete

 Performance, power, size, *cost* well understood
 Radiation performance & robustness proven
 FE ASIC testing systems & radiation qualification equipment in place
- Power supplies and cabling now under way
- System test advancing steadily schedule aggressive but no major obstacles foreseen
- Remaining risks
 - costs need to complete optical tender to manage
 - technical associated with component assembly and QA
- Production large scale orders: begin after December 2001 (& ESR) Milestone 200 & rod test provides final verification