Rad-tolerant optical components for the CMS Tracker

K. Gill CERN EP Division

6th RD49 meeting 23-3-01

Outline

- I. Brief Overview
 - CMS Tracker Optical Links
 - Environment
- 2: Radiation damage testing at CERN
 - Lasers
 - fibres
 - connectors
 - photodiodes
 - System considerations
- 3: Summary

CMS at CERN/LHC

CMS Tracker readout and control links

final system:

Analogue Readout

CMS Tracker optical link components

- Inside the Tracker and at patch panels inside CMS
 - Transmitter (analogue and digital links)
 - edge-emitting 1310nm InGaAsP/InP multi-quantum well laser (single channel die)
 - Fibres (analogue and digital links)
 - Ge-doped single mode standard telecom fibre
 - 1-way fibre pigtails, 12-way fibre ribbon cables, 8x12-way cables
 - Connectors (analogue and digital links)
 - I-way (MU-type)
 - 12-way
 - Receivers (digital links)
 - InGaAs/InP pin photodiodes (single channel)
- These components exposed to radiation

COTS components for CMS Tracker links

Some examples of prototypes:

1-way InGaAsP edge-emitting lasers on Si-submount with ceramic lid

96-way cable

12-way optical ribbon and MT-connector

single fibre and MU connector

COTS issues

- Extensive use of commercial off-the-shelf components (COTS) in CMS optical links
 - Benefit from latest industrial developments
 - cheaper
 - "reliable" tested devices
 - However COTS not made for CMS environment
 - no guarantees of long-life inside CMS
- validation testing of COTS mandatory before integration into CMS

Tracker radiation environment

high collision rate high energy large number of tracks radiation damage

lifetime >10 years temperature -10C

Charged hadron fluence (/cm² over ~10yrs)

Validation procedures for rad-resistance

- Feedback test results into system specifications
 - radiation damage effects can then be mitigated

Neutron tests at UC Louvain-La-Neuve

Recent validation tests of laser diodes

~20MeV neutrons flux ~ $5x10^{10}$ n/cm²/s fluence ~ $5x10^{14}$ n/cm²

(Similar to CMS Tracker 10 year exposure)

Samples stacked inside cold box (-10C)

Radiation test system

Test setup for in-situ measurements

- In-situ measurements give powerful capability to extrapolate damage effects to other radiation environments
 - e.g. CMS Tracker, if damage factors of different particles known
- Similar test setup for p-i-n and fibre studies

neutron damage - Italtel/NEC lasers

Light output vs current characteristics before and after neutron irradiation

temperature =23C

Damage effects consistent with build-up of non-radiative recombination centres in/around active laser volume, causing a decrease in injected charge carrier lifetimes

neutron damage - Italtel/NEC LD

Different vendors compared

I_{thr} and Eff changes vs neutron fluence

similar effects in all 1310nm InGaAsP lasers

Radiation source comparison - Italtel/NEC laser

For comparison with other sources: Normalize to fluence = $5 \times 10^{14} \pi/cm^2$ in 96 hours irradiation

Extend to 10 years, taking into account LHC luminosity profile

in worst case, at low radii∆l_{thr} = 14mA for Italtel/NEC lasers

Reliability of irradiated lasers

- irradiated device lifetime > 10 years??
- Ageing test at 80C

- No additional degradation in irradiated lasers
- acc. Factor ~400 relative to -10C operation
- lifetime >>10years

Tests of fibre attenuation

Gamma damage (CMS-TK COTS single-mode fibres) at 1310nm

Fibre annealing

damage recovers after irradiation (e.g. gamma)

Damage therefore has dose-rate dependence

Fibre attenuation vs fluence

• 'Neutron' damage (CMS TK)

damage actually most likely due to gamma background

Connector validation

	TOT min		TOT avg		TOT max	
	⊒	RL	⊒	RL	L	RL
Before irr:	0	45	0.15	49	0.58	53
After irr:	0.02	43	0.23	47	0.4	52

E.g. MU connector results

K. Gill, 23-3-01

Tests of photodiodes - leakage

leakage current (InGaAs, 6MeV neutrons)

similar damage over many (similar) devices

Photodiodes - response

Photocurrent (InGaAs, 6MeV neutrons)

- Significant differences in damage
- depends mainly if front or back-illuminated
 - front-illuminated better

Different particles (leakage)

leakage current (InGaAs, different particles, 20C)

• higher energy π , p more damaging than n

Different particles (response)

different particles:

• higher energy π , p more damaging than n

InGaAs p-i-n annealing

After pion irradiation (room T, -5V)

- Leakage anneals a little
- No annealing of response

InGaAs p-i-n reliability

- irradiated device lifetime > 10 years??
- Ageing test at 80C

PD SEU

photodiodes sensitive to SEU

strong dependence upon particle type and angle

Experimental setup for particle-induced BER

Photodiode Single-event-upset

- Bit-error-rate for 80Mbit/s transmission with 59MeV protons in InGaAs p-i-n (D=80μm)
- 10-90° angle, 1-100μW optical power
- flux ~10⁶/cm²/s (similar to that inside CMS Tracker)

- Ionization dominates for angles close to 90°
- nuclear recoil dominates for smaller angles
- BER inside CMS Tracker similar to rate due to nuclear recoils
- should operate at ~100μW opt. power

System considerations

Build in radiation damage compensation into optical link system

Lasers

- provide adjustable d.c. bias to track threshold increase
- provide variable gain to compensate for efficiency loss (and other gain factors)
- Fibres and connectors
 - No significant damage
- Photodiodes
 - provide leakage current sink
 - provide adjustable gain
 - ✓ use sufficient optical power (~100µW) to avoid significant SEU effects

Summary

- CMS Tracker Optical links project
 - 50000 analogue + 1000 digital links
 - harsh radiation environment, 10 years at -10C
 - COTS components
- Extensive validation testing of radiation hardness necessary
 - ionization damage (total dose)
 - displacement damage (total fluence) and annealing
 - reliability
 - ♦ SEU
- Accumulated knowledge of radiation damage effects
 - compensation built into optical link system
 - confidence of capacity to operate for 10 years inside CMS Tracker