Reliability of fibre-optic data links in the CMS experiment

Karl Gill CERN EP/CME-OE

Outline

- Projects overview: CERN Optical links for CMS (*)
- Reliability issues
- Philosophy to maximize reliability
 - Reliability assurance
- Reliability testing of components and system
 - Environmental (radiation damage) and standard reliability testing
 - COTS issues

(*) Not including TTC-specific or CMS/DAQ link systems

COTS = Commercial Off-the-shelf

2

Optical link team

- CERN team
 - Overall CMS link projects manager:
 - QA (reliability) + Control link project manager:
 - QA (analogue links):
 - Technical support + Integration:
 - Digital links (test+development):
 - ECAL links (test+development):
 - QA testing (radiation damage+reliability):
 - QA testing (functionality):

Francois Vasey Karl Gill Jan Troska Robert Grabit Christophe Sigaud Etam Noah Guy Dewhirst Raquel Macias Guilia Papotti

- In collaboration with:
 - CERN/MIC
 - Vienna
 - Perugia
 - Minnesota
 - Imperial College/RAL

(ASICs+control system) (optohybrids) (optohybrids) (ECAL links) (Tracker FED)

Reliability of fibre-optic data links in the CMS experiment

Optical link for CMS readout/control

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Optical links for CMS readout/control

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Reliability

- Adopted a simple definition for our practical uses:
 - Reliability = Probability of surviving for the required lifetime in the given environment
 - 'surviving' = <u>system</u> still capable of operating within spec
 - (even if components degraded/radiation-damaged)
- Also related issues ('RAMS')
 - Availability
 - Maintainability
 - Safety
 - Good "RAMS" = dependability

Ref: CERN Reliability and Safety training course, 2002.

CMS links 'RAMS'

- <u>Target</u> 100% reliability (and availability) of final system
- Zero maintenance possible/envisaged <u>at front-end</u> once inside CMS
 - Integrate only known good and known reliable components
 - Qualification
 - Lot Acceptance
 - Advance validation
 - Integration (system) tests
- Maintainability
 - Can replace back-end parts rapidly
 - Accessible in counting room
- Safety

Final system: Class 1, with no (IEC) requirements other than labelling Halogen free, flame-resistant, low-smoke parts (CERN rule)

Reliability issues for CMS optical links

- Many issues impact reliability in this project
 - Some very different to telecoms (*) fairly typical, (****) unheard of!

•	Complexity of system	
	Inaccessibility	(*)
	 Radiation 	(****)
	 Quantity of components 	(* * *)
	 Integration involving many groups 	(* * *)
	Complexity of production	
	 Novel components 	(*)
	COTs and COTs-based parts	(*/***)
	 Multi-supplier chain for most parts 	(* * *)
•	Long project lifetime	
	 10 year span of development to commissioning 	(****)
	 10 year operational lifetime 	(*)

Similar projects, good contacts established (via RADECS, NSREC, SPIE conf's)

NASA (NEPP program, JPL), ITER (SCK-CEN, Be)

Component Reliability Assurance

10

Reliability of fibre-optic data links in the CMS experiment

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

e.g. analogue link project: the most advanced.

			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
					1 .							
			RD23	dev	elopment	market	survey	pre-prod		production		
				choice	of technolog	gy		design freez	ve —			
Specificatio	n				Ì							
Tendering				•					 contracts			
Tendering												
Integration	in tracker(cab	oling, hybrids	5)									
Developme	electronics											
1	optoelectron	nics										
Test	prototype fu	nctionality										
	pre-production											
	production (lot samples)											
	radiation/ral	ability										
		lability										
Installation												
	test (100% x	(2)										
Maintenance in tracker												

QA/RA longest part of project. Still a lot of work to do.....

Optical link system requirements and implementation

Functionality Requirements

Focusing on CMS/Tracker analogue readout link system

Readout ~10 million silicon strips at 40Msamples/s

- ~40k optical link channels
- 256:1 time-multiplexing

Linearity	1-2%
Dynamic Range	7-8 bits
Settling Time	<20ns
Gain	0.8 (3 MIP, 75K e- signal)

Requirements: environment factors

- Temperatures
 - TK –10°C, ECAL 10° to 30°C

(fairly standard for telecoms)

- Magnetic field
 - **4**T
- Small volume available
 - Compact packages, dense connection arrays, minimal mass
- Inaccessibility and lifetime
 - inside Tracker and ECAL practically inaccessible for maintenance
 - ten year lifetime
- Last but not least.... radiation environment

Requirements: radiation environment

- High Energy 7+7TeV
- High rate
 - Large radiation field
 - mainly pions (few hundred MeV) in Tracker

Charged hadron fluence (/cm² over ~10yrs) (M. Huhtinen)

16

Reliability of fibre-optic data links in the CMS experiment

Implementation: Specifications

- e.g. analogue link main performance specs
 - evolved/iterated during development phase
 - frozen before production

Spec	System	A-OH	Rx-module						
INL (2MIP)	1% typ.	1.5% max	0.5%						
S _p NR (6MIP)	48dB typ.	46 dB min	60dB						
Bandwidth	70 MHz	90 MHz min	100 MHz						
many other parameters specified, see www									

Implementation: Technology choice (1996)

Developed analogue link system first (most links + most difficult)

Requirement	Technology choice
Linearity	Edge emitting Laser
Dynamic Range	Single mode System, 1310nm wavelength
Settling Time	Fast electronics (BiCMOS or CMOS-Subµ)
Gain	10bit ADC with equalization
Magnetic Field	Non-magnetic connectors and packages
Radiation	Extensive qualification of COTS-based components
Density	Semi-customized laser package
	Fibre ribbon & array connectors
	Customized multi-ribbon cable
	Semi-customized Rx-module

Control link and ECAL readout developed later using many of same parts

Implementation: Architecture (1996)

Tracker analogue readout link

(Original RD23 link: reflective modulator at front-end, elegant but expensive/risky)

karl.gill@cern.ch

Implementation: Components (2000-02)

- Many COTS/COTS-based parts (e.g. analogue links)
 - Each component also has own CERN specification
- Long procurement process
 - CERN Market-Survey/Tendering

Implementation: logistics (2001 -)

CERN in (unusual?) position of being both a customer and a supplier

21

Reliability of fibre-optic data links in the CMS experiment

Timescales

e.g. analogue link project: the most advanced.

			1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
			DD02	day	alammant				1	1		
			KD23	dev	elopment	market	survey	pre-pro	bd	production		
				choice	of technolog	gy		design fre	eeze —			
Specificatio	m											
				•								
Tendering									contracts			
Integration	in tracker(cab	oling, hybrids	5)									
Developme	electronics								D			
1	optoelectror	nics										
Test	prototype fu	nctionality										
	pre-producti	e-production										
	production (lot samples)										
	radiation/rel	iability										
Installation												
	test (100% x	(2)										
Maintenance in tracker												
1.1amenan												

QA/RA longest part of project. Still a lot of work to do.....

Other link systems

- Philosophy to re-use bulk of analogue link parts for other smaller systems
- Optimizes effort, reduces overall costs, development/qualification time/effort

Reliability testing

Reliability Testing Goals

- Several important objectives
 - Validate various COTS parts for use in CMS
 - Disqualify weak candidate components (in Market Survey before Tender)
 - Understand and quantify damage/degradation effects
 - Refine the system and component specifications
 - Design-in damage mitigation
 - Validate test methods and define (pre)production test-procedures
 - Improve the production processes where possible

Reliability Testing overview (1996 - present)

- Environment
 - Irradiation [lasers, photodiodes, optohybrids, fibre, connectors, cables]
 - B-field [lasers (Vienna)], photodiodes and connectors]
 - Temperature [lasers, optohybrids (Perugia and Vienna)]
- Other accelerated stress-aging tests
 - High-T storage, thermal cycles [lasers, photodiodes, <u>fibre</u>, <u>cables</u>]
 - Strength [fibres, cables, lasers]
 - Mating cycles [connectors]
- Also manufacturer's own tests
 - Internal qualification
 - Lot tests
 - Assistance with CERN QA

Use of industry reliability standards

- Bellcore Reliability Standard GR 468
 - "Generic Reliability Assurance Requirements for Optoelectronic Devices Used in Telecommunications Equipment"
 - Other standards used include US-MIL 883, IPC
- Standards provide framework for manufacturers, vendors, suppliers and customers to discuss actions related to reliability of parts
 - e.g. definition of test procedures

MIL 883, US Department of Defense Microcircuits IPC 'Association Connecting Electronics Industries'

27

Limitations of standards/COTS for LHC

- Telecoms vendors typically qualify products to Bellcore standard
 - CERN/LHC very special application
 - Unusual environment in particular, requires own
 - reliability specs
 - test-procedures
 - acceptance criteria
 - We want to use COTS to avoid custom development
 - cannot expect manufacturers to 'upscreen' COTS products or re-gualify
 - **CFRN** must -
 - validate prototypes prior to Tender
 - qualify pre-production batches before final production
 - advance validate COTS sub-components
- A lot of work and heavy testing program
 - costs some money (So far <<NASA NEPP \$10million/yr)</p>
 - No choice few rad-hard qualified parts available
 - Also, any custom parts would have to be qualified too!

COTS issues (example of laser)

- Laser in 'mini-pill' package
 - Part of COTS transmitter product
 - Normally inside a rugged DIL package
- Radiation hardness validated by CERN
 - resources not infinite:
 - incomplete understanding of the damage effects
 - no guarantee of radiation hardness of future batches
- Need to avoid (big) problem of having to reject fully assembled laser transmitters
 - ~200% added value
 - also avoid delays, possible disputes.....
- Use Advance valdiation test (AVT) procedure

Project QA overview

Will look at some reliability test data from various points in QA:

Dates for lasers

Reliability of fibre-optic data links in the CMS experiment

Accelerated test philosophy

- Forced to make accelerated tests due to limited time/resources available
 - E.g. test 'worst-case' radiation exposure
 - also other acceleration factors: temperature, electrical bias
 - different particle types in CMS spectrum
 - in-situ measurements
 - maximum information on effects and rates of change
 - Post-test comparisons easy:
 - different radiation sources
 - different manufacturers
 - different operating conditions
- Idea to extrapolate from accelerated tests to CMS conditions
 - Calculate expected degradation
 - Refine test procedures for production QA

Environmental testing

e.g. validation tests on lasers (1999-2001)

- Measured
 - Damage: different sources, different T, bias
 - Annealing rates, acceleration factors
 - Wearout
- 24 laser samples used in total, Ref: Gill et al, SPIE 2002

Irradiation test system

Measurement setup (lasers)

- In-situ measurements allows confident extrapolation/comparison
 - Avoid before/after tests unless damage kinetics understood
 - Few changes to test-procedure since 1997 for consistency
- Very similar system used for fibre and photodiodes

Irradiation at SCK-CEN and UCL

UCL ~20MeV neutrons flux ~ 5x10¹⁰n/cm²/s

SCK-CEN Co-60 γ 2kGy/hr underwater

Interested to use these sources? Please contact me

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Ionization damage – typical laser data

Laser L-I characteristics

- Before/after 100kGy (10Mrad)
- Threshold current (laser turn-on) unchanged
- Efficiency (laser power output per unti current) unchanged
- No significant damage caused by total ionising dose (TID)
- Same conclusion for <u>all</u> laser diodes tested
 - Can have some loss of output light if lenses included in package
 - No lenses in CERN lasers

Displacement (bulk) damage

Laser L-I before/after 3x10¹⁴n/cm²

- ~20MeV neutrons
- (CRC, Louvain la Neuve, BE)
- Temp -13°C

Laser threshold I_{thr} increases efficiency E decreases

Damage vs neutron fluence

Laser threshold I_{thr} and efficiency E <u>always</u> approximately linear with fluence

- Damage 'roll-off' due to annealing during irradiation period
- Threshold change proportional to initial value

Other laser suppliers

I_{thr} and Eff vs neutron fluence

Normalised effects similar in <u>all lasers tested</u> (ref: Gill et al, LEB 1998)

Reliability of fibre-optic data links in the CMS experiment

Qualitative damage model

0000 8 X350 16 p-InGaAsP n-InP p-InP p-InP n-InP (ACTIVE) n-InP (SUBSRATE)

- defects reduce carrier lifetime in active volume
 - (ref: Pailharey et al, SPIE 2000)
- non-radiative recombination
 - competes with radiative recombination in laser
- Damage follows (usual) Messenger law for bulk damage

$$1/\tau = 1/\tau_0 + k\Phi$$

i.e. introduction of defects proportional to fluence

Annealing of displacement damage

Laser threshold I_{thr} and efficiency E

- after 4x10¹⁴n/cm²
- ~20MeV neutrons (UCL)
- Temp 20°C

- <u>Beneficial annealing only</u> (more fortunate than silicon sensors)
 - recovery of damage during/after irradiation
- Same annealing mechanism for I_{thr} and E (not so evident in this plot!)
 - Same defects responsible for damage

Damage comparison

Laser threshold I_{thr} with different sources (averaged and normalized)

- Coverage of various parts of CMS particle energy spectrum
 - Pions most important
- <u>Similar factors</u> as for other 1310nm InGaAsP/InP lasers (NEC, Alcatel)

Laser and PIN damage α non-ionising energy loss?

- Appears so but not sure: Need spectrum of recoil energies to calculate NIEL
- However, can understand already why relative damage factors so different to Si
 - Damage factors (Si) ~equal for 1MeV n: 200MeV π: 24GeV p

NIEL for heavier In, Ga, As recoils does not saturate so quickly as Si

Reliability of fibre-optic data links in the CMS experiment

Cold n-irrad

- Important to check damage close to intended operating temperature of -10°C
 - UCL neutron irradiation at -13°C
 - Similar amount of damage to room T
 - only ~25% greater
 - annealing behaviour has similar form as room T
 - but slower rate (Annealing is thermally activated)

Annealing vs T

Compare results at different T , normalized to measurements at -13°C

- No single activation energy E_a for annealing
 - Multiple types of defects involved (giving multiple E_a)?
 - Reduced disorder near defects due to annealing increasing E_a?

Laser damage prediction in CMS Tracker

 Even without thorough understanding, can predict damage evolution over a 10-year lifetime inside Tracker

- Based on damage factors and annealing rate at close to -10°C
 - Take worst-case
 - radius=22cm in Tracker
 - pion damage dominates
 - $\Delta I_{thr} \sim 5.3 \text{mA}$ in 10 years
 - ▲E~6% in 10 years
- Damage decreases further away from beam interaction point
- ~50% at r=32cm, ~30% at r=41cm (within Tracker volume)

Ref: Gill et al, SPIE 2000 and 2002

45

Reliability of fibre-optic data links in the CMS experiment

Laser wearout

Aging test at 80°C

Threshold increase expected

Measuring end of the "bath-tub curve"

Eailure rate

Aging test data at 80°C for irradiated lasers

Refs: Gill et al, SPIE 2002, RADECS 1999

- 12 devices irradiated to 4x10¹⁴n/cm² (UCL)
- 2500 hrs ageing
- No additional degradation seen in irradiated lasers
- acc. factor ~400 relative to -10°C operation, for E_a=0.4eV
 - 10⁶hrs at -10°C !!
 - (Mitsubishi E_a=0.7eV)
- takes >>10years for wearout
- similar data for other laser types

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

COTS issues revisited damage mitigation and advance validation

COTS Components

Recall many COTS or COTS-based parts in TK analogue readout link system

Reliability of fibre-optic data links in the CMS experiment

CERN COTS solutions

- Shown an example of focused/extensive environmental testing
 - Quantified and qualitatively understood effects
- Then written 'reasonable' component specifications for laser supplier
 - e.g. damage depends on starting I_{thr} value
 - higher starting I_{thr} means more (precursor) defects
 - laser wearout also related to starting I_{thr} value
 - limit max I_{thr} to 10mA for laser diode after burn-in at ST

CERN COTS solutions - continued

- To assure reliability further, a lot more work done:
 - Built-in mitigation of damage effects into system
 - Added damage compensation circuits in CERN/MIC designed ASICs
 - Linear laser driver (LLD)
 - (also receiver, RX 40, for control links)
 - Also, introduced special additional test for COTS Advance validation
 - Then, to catch any weak batches
 - Lot acceptance
 - Finally, to catch any defective parts that get through
 - 100% inspection during integration into detector sub-systems

Laser damage mitigation

- LLD specified to compensate for laser damage
 - for threshold up to 45mA
 - Recall worst-case CMS-Tracker
 - $\Delta I_{thr} \sim 5.3$ mA after 10 years
 - Large safety margin (almost 10x)
- (Aside: Large safety factor desirable in control links where potential resultant failure 30x more important)
- 640 (x2) lasers controlling 10 million detector channels (1:16000)
 - x2 also redundancy built into system since 'ring'architecture more risky than 'star'

LLD ASIC

Analogue optohybrid (CERN prototype)

Dates for lasers

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

CERN COTS solution - AVT

- AVT lasers, fibre, photodiodes from each batch of raw material
 - laser wafer
 - photodiode wafer
 - fibre preform
- Accept or Reject lots
 - before production of thousands of final parts or many kilometres of optical cable
- Requires very good working relationship with manufacturers & suppliers
 - Potentially tricky negotiation depending upon risk of rejection

Laser AVT procedure

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

LD AVT progress (data AVT 1)

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

OA detailed schedule (to 07/03)

fv/16.01.03										
Fine Scheduling	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
Front-End										
ECA buffered fibre	_									
	1									
SEI MU-MU jumper	f1b ac	c.								
		prod a4	a5	a6, a7		prod a8	a9	a10	a11a12	a13
	*	1500	1600	1545		1800	1500	1500	1545	1500
	2b ac	c 🔹			7					
SIMlaser	a3 acc		a4 acc	a5 acc	a6 acc			a9 acc	a10acc	allaco
			3w afei	procure	ment L4		1710	3w af er	procure	mentL1
	p-prod	LZ L3a	L3D	LSC 7 562		L0	2040	L9	L 2500	_ 2575
	•	100	020	002	90	1211	2040	2000	2000	90
CERNAVT	🛉 🖬	ore acce	pt.							,
	30 lase	ers from	3 w afe	rs (L1)		90 lase	s from 3	w afers	s (L4)	
	stock	accept		4	w afers	accept				wafers
			/							
p-prod qualification	Ĭ		100 las	ers (L2)						
	•				lasers	qualified				
	X									
production lot valid.	f2b ac	C			a7 acc.		a8 acc.			a12aco
	jihro o							L8 acc.		
			a4	# 5	a6.7		a8	a9	a10	a11 12
	L1	1	L2,3	[L4,5	L6	L7,8	L9	L10
	▼	▼								
irradiation		SCK y	UCL n	Tavl γ	UCL n	SCK y	UCL n		SCK γ	UCL n
		4-Nov	#####		15-Feb	15-Mar	15-Apr		15-Jun	15-Ju

- Heavy/complex QA schedule
 - LD AVTs mixed with other QA:
 - AVTs
 - Fibres
 - Photodiodes
 - Pre-prod Qualification
 - Cables
 - 12 ch Receivers
 - MFS Connectors
 - Photodiodes
 - Optohybrids
 - 4 ch Transceivers
 - Lot Acceptance
 - Fibre
 - Cable
 - MU Connectors

Pre-production problems

- Even with extensive QA/RA procedures nothing produced yet has been perfect!
 - Quick look at some recent problems/fixes (2003)
- e.g. Fibres and cables
 - These components cheapest and least expected to fail!
- Accelerated (thermal) testing made at CERN to assess severity of problem
 - Try to fix immediate problem
 - Determine if problem affects long-term reliability?
- Also some iteration required with other pre-production parts
 - Laser (failed pull-tests, now OK)
 - A_Rx (too slow, now OK)
 - MFS connectors (adapters failing, under investigation)

Buffered fibre problem

- Shrinkage + 'cracking' of fibre seen at ST at 70°C
 - CERN life-tests:
 - Bare fibre and lasers from pre-prod batch
 - Storage at –25°C
 - Storage at 50°C
 - Thermal cycles –25°C and 50°C
 - Storage at 70°C
 - Small amount of fibre shrinkage (~1mm)
 - depends on cutting method
 - Cracks observed in fibre (but not lasers)
 - propagate from (badly) cut end
 - later fibre batch less affected
- Solution(s) (CERN-Ericsson-ST-Sumitomo):
 - Ericsson have proposed a cutting procedure
 - Careful inspection pre-assembly (ST)
 - Reduce T in processing of lasers
 - Repair breaks found later in lasers

Ruggedized ribbon problem

- Kinks and 'cracks' in jacket found at Sumitomo
 - 12-sMU fanout-harness pre-prod stopped
- CERN thermal tests (3, 6, 12m lengths)
 - Storage at –25C
 - Storage at 50C
 - Cycles between –25C and 50C
 - Storage at 70C
 - Kinks found at 50C,
 - Cracks at 70C (only in longer samples)
- Solution(s) (Ericsson, CERN, Sumitomo, Diamond)
 - Applied during connector termination
 - Work with shorter lengths
 - 6m maximum envisaged in Tracker
 - 'Relax' cable before terminating
 - Minimize heat treatment

karl.gill@cern.ch

Summary

Reliability Testing summary

- Recall aims of reliability testing
 - Disqualify weak candidate components
 - Understand and quantify effects
 - Design-in mitigation
 - Refine the specifications
 - Define test-procedures
 - Improve processes

- Demonstrated achievements with lasers
 - Parallel activity with fibre, cables, connectors, receivers, transceivers, photodiodes, optohybrids

Tracker system reliability

Now - how to quantify reliability (failure rate) of an entire system?

- Focus has been so far mainly on components
 - Still missing some statistics of real shape of 'bath-tub'
- Have good (extrapolated) confidence for reliability of optical link systems
- Needs more work to quantify/guarantee overall system reliability

63

Reliability of fibre-optic data links in the CMS experiment

Conclusions

- Defined a working quality and reliability assurance program for components
 - Bellcore Reliability standard GR 468 as baseline
 - Added CERN/CMS ingredients
 - reliability specs, test-procedures and acceptance criteria
 - Needs more statistics and work to quantify final system reliability
- QA/RA program has taken advantage of COTS components for telecoms
 - Focused validation and selection prior to Tender
 - System/handling specs compensate for known damage effects
 - Advance validation before production
- Not mentioned much so far, but very (very) important:
 - Success depends upon excellent communication
 - CERN, CMS, Suppliers
 - Discussion of failures, weaknesses, responsibilities always difficult
 - Every problem so far has been overcome......
 - Many thanks to everyone involved

Extras

leakage current (InGaAs, 6MeV neutrons)

similar damage over many (similar) devices

Photodiodes - response

Photocurrent (InGaAs, 6MeV neutrons)

- Significant differences in damage
- depends mainly if front or back-illuminated
 - front-illuminated better

leakage current (InGaAs, different particles, 20C)

• higher energy π , p more damaging than n

different particles:

• higher energy π , p more damaging than n

After pion irradiation (room T, -5V)

- Leakage anneals a little
- No annealing of response

70

Reliability of fibre-optic data links in the CMS experiment

InGaAs p-i-n reliability

- irradiated device lifetime > 10 years??
- Ageing test at 80C

photodiodes sensitive to SEU

Proton Induced Bit Errors

Proton ionization tracks or reaction recoils generate charge in detectors.

strong dependence upon particle type and angle

Reliability of fibre-optic data links in the CMS experiment
Optical receiver SEU testing

- SEU tests made with neutrons and protons (UCL)
 - Ref: LEB 2000.

ASIC mounted with 2 photodiodes

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Experimental setup for SEU (p, n) BER

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Photodiode Single-event-upset

- Bit-error-rate for 80Mbit/s transmission with 59MeV protons in InGaAs p-i-n (D=80μm)
- 10-90° angle, 1-100μW optical power
- flux ~10⁶/cm²/s (similar to that inside CMS Tracker)

- Ionization dominates for angles close to 90°
- nuclear recoil dominates for smaller angles
- BER inside CMS Tracker similar to rate due to nuclear recoils
- should operate at ~100µW opt. power

System implications

- Based on a charged particle flux of 10⁶/cm²/s
 - typical of tracker levels

Should maintain optical power > $\sim 100 \mu W$

Reliability of fibre-optic data links in the CMS experiment

Fibre radiation damage testing

- 1-way fibre
 - attenuation
 - strip force
- 12-way cable
 - insertion loss
 - bending loss
- 96-way cable
 - strength tests

in-situ measurement of fibre attenuation

Ref: Market Survey, 2000 (SCK-CEN Co-60 source)

Reliability of fibre-optic data links in the CMS experiment

'Colour centres'

- Attenuation in irradiated glass due to radiation induced "colour centres"
- e.g. lenses irradiated in collimated beam
- impurities affect degree of damage

courtesy A.Gusarov (SCK-CEN)

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Gamma damage

Fibre attenuation up to 100kGy

- COTS single-mode fibres
 - 1310nm
- for ~10m length inside CMS Tracker expect no more than ~0.6dB (not including annealing)

ref: Troska et al, Proc. SPIE 1998

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Neutron damage

~6MeV neutrons to ~5x10¹⁴n/cm²

 Damage most likely due to γ background

ref: Troska et al, Proc. SPIE 1998

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Fibre annealing

damage recovers after irradiation (e.g. γ data)

- Significant annealing after irradiation
- Damage therefore *dose-rate* dependent
 - expect more annealing over CMS Tracker lifetime
 - i.e. less damage than measured here

ref: Troska et al, Proc. SPIE 1998

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

- Ericsson standard single-mode fibre
 - Advance validation test of final naked fibre spools
 - Before plastic buffer added.
- 100m long samples from 2 glass preforms irradiated with
 - ~80kGy Co-60 gamma
 - 1.1x10¹⁴n/cm² (~20MeV)
- Final loss at 1310nm in final system with 150kGy max dose limited to ~0.01dB/m
- Accept fibre for final production

12-way ribbon cable bef/after 100kGy

- No significant degradation after irradiation
- No bending loss seen down to 1.5cm bend-radius (spec=3cm)

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

Cable strength

- 4x10m 96-way cable samples
 - 1x 100kGy gamma
 - 1x 10¹⁴n/cm² 0.75MeV neutrons
 - 1x 100kGy gamma + 10¹⁴n/cm² 0.75MeV neutrons
 - 1x unirradiated
- Tested by Ericsson Cables
 - Impact
 - Repeated bending
 - Tensile load
 - no significant degradation due to radiation damage

Company	,	SC-APC <-> FC-APC		SC2 <-> FC-APC	LC <-> FC-APC		MU <-> FC-APC	sMU <-> FC-APC		Reglette <-> MPO	•	12FC-APC <-> FC-APC		Redel-D <-> FC-APC		2MT-RJ <-> FC-APC			12MT <-> MPO		4MT <-> MPO	12MPO> EC-APC			12MPO <-> MPO		4MPO <-> MPO		4miniMPO <-> MPO		12MFS A/B <-> MPO			12SMC MDO	MD <-> MD	
Amphenol		0																														Ц				
Compel				+++	+++		X					\square																		_		++				4
Diamond			_	┼┼╂	┽┼┦		┼┼╂	++		++	++	++				13	C						Х				╂╂	+		4	6 0				++	+
EITEL (Eurukawa)				╉╋	╉╋			++	++	++	┼╂	++	++	++	\mathbf{H}										2					4	00	"—				+
Fuiikura				┼┼╂	+++		X		++	++	++	++	++						24	х					-	х	х					+				+
LEMO				┼┼╂	+++									Х																		+				Ħ
NTT							0		D			++								Ħ												+				Ħ
Radiall								T							Ħ												П				ht	$\uparrow \uparrow$)	
Infineon (Siemens)				ο				П							Π												Π	\prod				\square				
Sumitomo					0													43	2					11	11	0										
		B-field test passed (weak effect)																																		

Reliability of fibre-optic data links in the CMS experiment

MU-connector irradiation

- After 100kGy
 - no damage effects

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch

MT-connector irradiation

- After 100kGy
 - no damage effects

Reliability of fibre-optic data links in the CMS experiment

- Repetitive connection cycles
 - 40 before irradiation
 - 100 after irradiation
 - 200kGy and 10¹⁴n/cm²
- No radiation damage effects
 - Ref: Batten et al., RADECS
 1997 Data Workshop

Reliability of fibre-optic data links in the CMS experiment

karl.gill@cern.ch