Digital Control Links Status and Plans

K. Gill 5/11/03

http://cms-tk-opto.web.cern.ch/cms-tk-opto/control/ESR/

Outline

- Overview of system
 - Functional requirements
 - Specifications
 - Components
 - Power budget and margins
 - Integration
- QA/Reliability
 - System tests
 - Radiation resistance
 - Pre-production qualification
 - Lot acceptance
- Procurement Status
 - Production Flow
 - Delivery schedules

System Overview

- Tracker 352 rings (includes 32 new TEC rings)
- ECAL 368
- Preshower 52
- Pixels 66
 - All with redundancy

Ref: LECC 2002 cms-tk-opto.web.cern.ch/

Functionality

- Digital link transmits
 - On clock line (@80Mbit/s)
 - 40MHz clock
 - Trigger
 - Resynch
 - Cal-request
 - On data line (@40Mbit/s)
 - Slow control data and tokens
 - Reset signal for front-end

karl.gill@cern.ch

Digital Control Links Tracker ESR

Specification	Min	Тур	Мах	Notes
Wavelength (nm)		1310		Same as analogue links
Speed (Mbits/s)	2		80	AC coupled
Bit-error-rate		10-12		
Jitter (ns)			0.5	rms
Skew (ns)			2	Between fibres to/from same digital optohybrids
TRx Input/Output		±600mV		LVPECL input CML output into 100Ω
DOH Input/Output Voltage ranges		±400mV		LVDS, differential referred to Vss. Input impedence 100Ω , output should be terminated with 100Ω
Reset output from DOH		Active low		Reset output when no signal detected on DOH input data line for 10 clock cycles

- Not so many optical channels in this system
 - ~7000
 - c.f. ~40000 analogue readout channels
 - Aim to minimize indirect costs of development and procurement effort
 - re-use analogue link components where possible
 - laser (low effic.), Laser Driver ASIC (LLD), Fibre, Cables and Connectors
 - Only a few unique parts for digital control link
 - Front-end: photodiodes, Receiver ASIC (RX40), digital optohybrid (DOH)
 - Back-end: Transceiver
 - Benefit from a lot of earlier work on analogue links: component development, qualification (functionality and radiation hardness), procurement
 - DOH also to be made at Kapsch, Vienna
 - Benefit from their experience with Analogue Optohybrid (AOH)

Components

Functional reliability: Optical power budget

Factors affecting power levels

DOH to TRx

DC offset	Modulation (signal)
I2C dc bias setting (and laser threshold) Laser driver dc gain	Input voltage amplitude I2C dc bias setting (and laser threshold)
Laser efficiency	Laser driver gain
Insertion loss + Attenuation	Laser efficiency Insertion loss + Attenuation

TRx to DOH

DC offset	Modulation (signal)
TRx laser efficiency	TRx laser efficiency
Insertion loss + Attenuation	Insertion loss + Attenuation

Power budget detail: DOH to TRx links

To avoid saturating TRx-Rx input, we have reduced laser efficiency (16uW/mA in place of 40uW/mA)

Power budget detail: TRx to DOH links

No problems from TRx to DOH

karl.gill@cern.ch 5-11-2003

Integration - cabling

TOB cabling continued

QA/Reliability Tests

QA/Reliability

- Active components
 - Lasers Qualification and AVT
 - Done already for analogue links will not cover
 - Photodiodes Qualification and AVT
 - Will present
 - Transceivers Qualification
 - Will present
- Passive components
 - Fibres Qualification and AVT
 - Done already for analogue links will not cover
 - Cables and Connectors Qualification and AVT
 - Ongoing for analogue links will not cover
- System (Will present)
 - Eye patterns
 - Bit error rate (BER)

PIN photodiode qualification – optical/electrical

PINs with new gluing process

- First delivery for pre-production not strong enough
- Fermionics has changed their assembly process
 - essentially using more epoxy to provide tensile resistance >7N
- Re-supplied 50 devices
 - 40 pulled with 700g.
 - Only 1 failure
 - 30 parts destructively tested
 - Only 1 fails <7N</p>

- These devices considered acceptable
 - Will test non-destructively samples from future series production

PIN AVT procedure for radiation resistance

PIN AVT Neutron data

- Effects similar to those seen in past. Some variation between wafers.
- Fluence estimated to be in range of 0.7-1.4x10¹⁵n/cm²
- Devices probably sufficiently radiation resistant for CMS Tracker.

karl.gill@cern.ch

5-11-2003

Digital Control Links Tracker ESR

Digital Opto-Hybrid

26-way NAIS Electrical Connector: - CK/DA to/from CCUMs - Reset to CCUM

- I²C to/from CCUM

Digital Control Links Tracker ESR

New laser characteristics on v.4 DOH

Saturation of TRx at startup now unlikely with lower laser efficiency

Digital Control Links Tracker ESR

DOH Test System, CERN

DOH Test setup Labview output

NGK Optobahn 4-way Backend transceiver module

- Transceiver pre-production
 - 25 pieces
 - Received end August
 - Test Procedure and setup/software in place

4TRx module

m-FEC

transceiver test-setup

karl.gill@cern.ch

5-11-2003

Digital Control Links Tracker ESR

4TRx measurement setup

- Measured
 - Electrical output levels
 - Optical levels
 - Jitter and skew
 - Power consumption
 - Effect of variations in power supply
- ALL PARTS PASSED TESTS

- Transceiver test-bench
 - very similar to DOH test-setup

Transceiver temporarily mounted on jig attached to modified O-FEC card

4TRx optical properties

Example of data from pre-production (25 pieces)

System signals

Eye patterns

Reset generation

Digital Control Links Tracker ESR

Full link made with DOH, TRX, 100m cable + 3 'patch-panels'

- Optical power margins measured in each channel
 - optical attenuation increased to point where errors occur or link fails
 - From DOH to TRx
 - Clock: ~17.5dB
 - Data: ~17.5dB

- From TRx to DOH
- Clock: ~9.5dB
- Data: ~10dB
- Tested for 15 hours without any errors BER < 3×10^{-13}

Illustration of Sensitivity & Saturation

- To illustrate the power budget and margins
 - consider BER vs average launched power

BER lower limit due to short measurement period (3 minutes with 40MHz, PRS-7)

Production Status

Production flow

Derived from analogue component flow + PINs, TRx, DOH.

Production status

- DOH pre-production
 - Order now in place at Kapsch
 - Met 29/11 in Vienna
 - 40 hybrids to be delivered end January
 - All tested during assemblyusing CERN supplied setup
 - before/after mounting lasers and pins
 - Full qualification at CERN Feb-March
 - If sucessful, DOH series production starts in April 04.
 - Will irradiate v4 CERN hybrids in November/December 2003.
- TRx series production will start soon.
 - New TRx modules for ECAL order will be re-qualified.
- PIN series production will start soon.
 - AVT aging step almost finished.
- All test procedures prepared

Delivery schedule

250 PRESHOWER PIXEL 200 ECAL TRACKER 150 100 50 0 Jun-04 Aug-04 Feb-04 Apr-04 Oct-04 Dec-04 Feb-05 Dec-03

4-TRx

DOH

karl.gill@cern.ch

5-11-2003

Digital Control Links Tracker ESR

Conclusions

- Control link specs frozen earlier in 2003 PINs, DOH, TRx
 - Available on EDMS
 - Shares many parts/procedures with analogue readout links
- QA/test procedures and schedules written, test-equipment ready
- Cabling/integration/traceability in parallel with analogue readout links
- Procurement started for all parts specific to the digital control links
 - PIN photodiodes (Fermionics, USA)
 - Pre-Production Qualification complete
 - Advance validation test (AVT) almost complete
 - Lasers (ST, Milan)
 - Low efficiency lasers integrated into schedule. 100 parts made.
 - DOH (Kapsch, Vienna)
 - CERN Prototype Version 4 (Narrow Pixel request) delivered/tested
 - Kapsch Order finalized.
 - TRx (NGK Insulators, Japan)
 - Pre-Production Qualification almost complete
 - Integration of TRX onto mFEC done
- Small number of `final' links (~10) available now if needed for test-systems